Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253596

RESUMEN

Clinical data networks that leverage large volumes of data in electronic health records (EHRs) are significant resources for research on coronavirus disease 2019 (COVID-19). Data harmonization is a key challenge in seamless use of multisite EHRs for COVID-19 research. We developed a COVID-19 application ontology in the national Accrual to Clinical Trials (ACT) network that enables harmonization of data elements that that are critical to COVID-19 research. The ontology contains over 50,000 concepts in the domains of diagnosis, procedures, medications, and laboratory tests. In particular, it has computational phenotypes to characterize the course of illness and outcomes, derived terms, and harmonized value sets for SARS-CoV-2 laboratory tests. The ontology was deployed and validated on the ACT COVID-19 network that consists of nine academic health centers with data on 14.5M patients. This ontology, which is freely available to the entire research community on GitHub at https://github.com/shyamvis/ACT-COVID-Ontology, will be useful for harmonizing EHRs for COVID-19 research beyond the ACT network.

2.
Griffin M Weber; Chuan Hong; Nathan P Palmer; Paul Avillach; Shawn N Murphy; Alba Gutiérrez-Sacristán; Zongqi Xia; Arnaud Serret-Larmande; Antoine Neuraz; Gilbert S. Omenn; Shyam Visweswaran; Jeffrey G Klann; Andrew M South; Ne Hooi Will Loh; Mario Cannataro; Brett K Beaulieu-Jones; Riccardo Bellazzi; Giuseppe Agapito; Mario Alessiani; Bruce J Aronow; Douglas S Bell; Antonio Bellasi; Vincent Benoit; Michele Beraghi; Martin Boeker; John Booth; Silvano Bosari; Florence T Bourgeois; Nicholas W Brown; Mauro Bucalo; Luca Chiovato; Lorenzo Chiudinelli; Arianna Dagliati; Batsal Devkota; Scott L DuVall; Robert W Follett; Thomas Ganslandt; Noelia García Barrio; Tobias Gradinger; Romain Griffier; David A Hanauer; John H Holmes; Petar Horki; Kenneth M Huling; Richard W Issitt; Vianney Jouhet; Mark S Keller; Detlef Kraska; Molei Liu; Yuan Luo; Kristine E Lynch; Alberto Malovini; Kenneth D Mandl; Chengsheng Mao; Anupama Maram; Michael E Matheny; Thomas Maulhardt; Maria Mazzitelli; Marianna Milano; Jason H Moore; Jeffrey S Morris; Michele Morris; Danielle L Mowery; Thomas P Naughton; Kee Yuan Ngiam; James B Norman; Lav P Patel; Miguel Pedrera Jimenez; Rachel B Ramoni; Emily R Schriver; Luigia Scudeller; Neil J Sebire; Pablo Serrano Balazote; Anastasia Spiridou; Amelia LM Tan; Byorn W.L. Tan; Valentina Tibollo; Carlo Torti; Enrico M Trecarichi; Michele Vitacca; Alberto Zambelli; Chiara Zucco; - The Consortium for Clinical Characterization of COVID-19 by EHR (4CE); Isaac S Kohane; Tianxi Cai; Gabriel A Brat.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20247684

RESUMEN

ObjectivesTo perform an international comparison of the trajectory of laboratory values among hospitalized patients with COVID-19 who develop severe disease and identify optimal timing of laboratory value collection to predict severity across hospitals and regions. DesignRetrospective cohort study. SettingThe Consortium for Clinical Characterization of COVID-19 by EHR (4CE), an international multi-site data-sharing collaborative of 342 hospitals in the US and in Europe. ParticipantsPatients hospitalized with COVID-19, admitted before or after PCR-confirmed result for SARS-CoV-2. Primary and secondary outcome measuresPatients were categorized as "ever-severe" or "never-severe" using the validated 4CE severity criteria. Eighteen laboratory tests associated with poor COVID-19-related outcomes were evaluated for predictive accuracy by area under the curve (AUC), compared between the severity categories. Subgroup analysis was performed to validate a subset of laboratory values as predictive of severity against a published algorithm. A subset of laboratory values (CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin) was compared between North American and European sites for severity prediction. ResultsOf 36,447 patients with COVID-19, 19,953 (43.7%) were categorized as ever-severe. Most patients (78.7%) were 50 years of age or older and male (60.5%). Longitudinal trajectories of CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin showed association with disease severity. Significant differences of laboratory values at admission were found between the two groups. With the exception of D-dimer, predictive discrimination of laboratory values did not improve after admission. Sub-group analysis using age, D-dimer, CRP, and lymphocyte count as predictive of severity at admission showed similar discrimination to a published algorithm (AUC=0.88 and 0.91, respectively). Both models deteriorated in predictive accuracy as the disease progressed. On average, no difference in severity prediction was found between North American and European sites. ConclusionsLaboratory test values at admission can be used to predict severity in patients with COVID-19. Prediction models show consistency across international sites highlighting the potential generalizability of these models.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20201855

RESUMEN

AO_SCPLOWBSTRACTC_SCPLOWO_ST_ABSIntroductionC_ST_ABSThe Consortium for Clinical Characterization of COVID-19 by EHR (4CE) includes hundreds of hospitals internationally using a federated computational approach to COVID-19 research using the EHR. ObjectiveWe sought to develop and validate a standard definition of COVID-19 severity from readily accessible EHR data across the Consortium. MethodsWe developed an EHR-based severity algorithm and validated it on patient hospitalization data from 12 4CE clinical sites against the outcomes of ICU admission and/or death. We also used a machine learning approach to compare selected predictors of severity to the 4CE algorithm at one site. ResultsThe 4CE severity algorithm performed with pooled sensitivity of 0.73 and specificity 0.83 for the combined outcome of ICU admission and/or death. The sensitivity of single code categories for acuity were unacceptably inaccurate - varying by up to 0.65 across sites. A multivariate machine learning approach identified codes resulting in mean AUC 0.956 (95% CI: 0.952, 0.959) compared to 0.903 (95% CI: 0.886, 0.921) using expert-derived codes. Billing codes were poor proxies of ICU admission, with 49% precision and recall compared against chart review at one partner institution. DiscussionWe developed a proxy measure of severity that proved resilient to coding variability internationally by using a set of 6 code classes. In contrast, machine-learning approaches may tend to overfit hospital-specific orders. Manual chart review revealed discrepancies even in the gold standard outcomes, possibly due to pandemic conditions. ConclusionWe developed an EHR-based algorithm for COVID-19 severity and validated it at 12 international sites.

4.
Gabriel A Brat; Griffin M Weber; Nils Gehlenborg; Paul Avillach; Nathan P Palmer; Luca Chiovato; James Cimino; Lemuel R Waitman; Gilbert S Omenn; Alberto Malovini; Jason H Moore; Brett K Beaulieu-Jones; Valentina Tibollo; Shawn N Murphy; Sehi L'Yi; Mark S Keller; Riccardo Bellazzi; David A Hanauer; Arnaud Serret-Larmande; Alba Gutierrez-Sacristan; John H Holmes; Douglas S Bell; Kenneth D Mandl; Robert W Follett; Jeffrey G Klann; Douglas A Murad; Luigia Scudeller; Mauro Bucalo; Katie Kirchoff; Jean Craig; Jihad Obeid; Vianney Jouhet; Romain Griffier; Sebastien Cossin; Bertrand Moal; Lav P Patel; Antonio Bellasi; Hans U Prokosch; Detlef Kraska; Piotr Sliz; Amelia LM Tan; Kee Yuan Ngiam; Alberto Zambelli; Danielle L Mowery; Emily Schiver; Batsal Devkota; Robert L Bradford; Mohamad Daniar; - APHP/Universities/INSERM COVID-19 research collaboration; Christel Daniel; Vincent Benoit; Romain Bey; Nicolas Paris; Anne Sophie Jannot; Patricia Serre; Nina Orlova; Julien Dubiel; Martin Hilka; Anne Sophie Jannot; Stephane Breant; Judith Leblanc; Nicolas Griffon; Anita Burgun; Melodie Bernaux; Arnaud Sandrin; Elisa Salamanca; Thomas Ganslandt; Tobias Gradinger; Julien Champ; Martin Boeker; Patricia Martel; Alexandre Gramfort; Olivier Grisel; Damien Leprovost; Thomas Moreau; Gael Varoquaux; Jill-Jenn Vie; Demian Wassermann; Arthur Mensch; Charlotte Caucheteux; Christian Haverkamp; Guillaume Lemaitre; Ian D Krantz; Sylvie Cormont; Andrew South; - The Consortium for Clinical Characterization of COVID-19 by EHR (4CE); Tianxi Cai; Isaac S Kohane.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20059691

RESUMEN

We leveraged the largely untapped resource of electronic health record data to address critical clinical and epidemiological questions about Coronavirus Disease 2019 (COVID-19). To do this, we formed an international consortium (4CE) of 96 hospitals across 5 countries (www.covidclinical.net). Contributors utilized the Informatics for Integrating Biology and the Bedside (i2b2) or Observational Medical Outcomes Partnership (OMOP) platforms to map to a common data model. The group focused on comorbidities and temporal changes in key laboratory test values. Harmonized data were analyzed locally and converted to a shared aggregate form for rapid analysis and visualization of regional differences and global commonalities. Data covered 27,584 COVID-19 cases with 187,802 laboratory tests. Case counts and laboratory trajectories were concordant with existing literature. Laboratory tests at the time of diagnosis showed hospital-level differences equivalent to country-level variation across the consortium partners. Despite the limitations of decentralized data generation, we established a framework to capture the trajectory of COVID-19 disease in patients and their response to interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...